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tunately, the generation and measurement of these modes
of propagation is not easily achievable with standard vector
network analyzers (VNA). However, under certain condi-
tions, one can relate the total nodal waves (each representing
two modes of propagation) to the desired differential and
common-mode waves. These nodal waves are readily gen-
erated and measured with standard VNAs, and with con-
sideration, the differential and common-mode waves, and
hence the mixed-mode s-parameters, can be calculated. There-
fore, the relationships between the normalized mixed-mode
waves (@dmi, Ddm1; Gemis bemi, etc.) and the nodal waves
(a1,b1,a2,by, etc.) will be derived, and the necessary con-
ditions for these relationships to exist will be found.

If one is to make a general purpose RF measurement port,
the values of characteristic port impedances must be chosen.
It is useful to require the even and odd-mode characteristic
impedances of the measurement system to be equal, thus
reducing the number of different valued matched terminations
required. In contrast, it is difficult to fabricate lumped termi-
nation standards for coupled lines where Z. does not equal
Z,. If the characteristic impedances of the lines are defined
to be equal (say, 50 Q). then a further simplification of the
above expressions can be accomplished with the substitution
Ze = Zy, = Zp where in the low-loss case Z; ~ Re{Z,} =
Ry.

By choosing equal even and odd-mode characteristic imped-
ances, one is selecting a special case of coupled transmission
line behavior, as described in (1). Enforcing equal even
and odd-mode characteristic impedances is equivalent to the
conditions of uncoupled transmission lines. As has been shown
in the literature [7], the condition Z, = Z, results in the
mutual impedances and admittances being zero (z,, = 0,
Ym = 0). Under these conditions, the describing differential
equations of the transmission line system (1) clearly become
uncoupled, resulting in two independent transmission line
solutions. Although very specific, this is a valid solution to (1),
and all results up to this point are also valid under the special
case of equal even and odd-mode characteristic impedances.
Therefore, we choose the reference lines of the mixed-mode
s-parameters to be uncoupled transmission lines. The key to
this choice is that these uncoupled reference lines can be
easily interfaced with a coupled line system, as discussed
below.

To interpret the meaning of uncoupled reference trans-
mission lines, consider a system of transmission lines: one
coupled pair, and one uncoupled pair connected in series
with the coupled pair. If even and odd (or ¢ and m) modes
are both propagating (forward and reverse) on the coupled
pair, then it can be shown that the waves propagating on
each of the uncoupled transmission lines are -linear com-
binations of the waves propagating on the coupled system
(see Appendix). Furthermore, the differential and common-
mode normalized waves of the coupled pair system can be
reconstructed from the normalized waves at a point on the
uncoupled line pairs (see Appendix). This point of recon-
struction is arbilrary, and one may choose the point to be
the interface between the coupled system and the uncoupled
reference lines.
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Fig. 4. Conceptual diagram of mixed-mode two-port measurement system,

Substituting Z, = Z, = Zy =~ Ry, the normalized nodal
waves of the coupled lines at the interface are
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where «; and b; are the normalized forward and reverse
propagating nodal waves at node 4, respectively, and ¢ € {1,
2, 3, 4]. These equations are applicable only in the case of
low-loss lines, with equal even and odd mode characteristic
impedance. By combining (12), (19), (20) and (24), it can be
shown that the differential and common-mode waves a port
| are

- -
E

1 :
Odm,; = E(”’l == (I'Z)I:rz() emy = (”‘l o "’2)].1‘:0
1
b — 7—5(111 = bgllecg Do, = 7 (by + bo)|o=o. (25)
Similarly, for port 2
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Equations (25) and (26) represent important relationships
from which mixed-mode s-parameters can be determined with
a practical measurement system. To understand the utility of
the above relationships, consider Fig. 4, which is a conceptual
model for a mixed-mode measurement system. By adjusting
the phase difference, ©, between the two sources to 0° or
180° one can determine the common-mode or differential-
mode forward s-parameters, respectively. Conceptually, the
measured quantities are the voltages and currents. These values
can be related to the normalized nodal waves, a1, b1, a, by,
etc., through the generalized definitions given in (24). From
these nodal waves, the differential and common-mode normal-
ized waves, and, hence, the mixed-mode s-parameters, can
be calculated. Physically, the various ratios of nodal waves,
a1,b1,a9,by, etc., are measured, and from theses ratios the
mixed-mode s-parameters are found.

The physical implementation of a mixed-mode s-parameter
measurement system can be achieved with a modification
of a standard VNA. The differential stimulus of a coupled
two-port requires the input waves at the reference plane



