Similar triangles and the Pythagorean theorem


Before embarking on trigonometry, there are a couple of things you need to know well about geometry, namely the Pythagorean theorem and similar triangles. Both of these are used over and over in trigonometry. 

(The diagrams in Dave's Short Trig Course are illustrated with a Java applet so that you can drag points around to change the diagram. See About the applet for directions. Drag the points in the images on this page to see what you can do.) 

The Pythagorean theorem

Let's agree again to the standard convention for labeling the parts of a right triangle. Let the right angle be labeled C and the hypotenuse c. Let A and B denote the other two angles, and a and b the sides opposite them, respectively. [image: image39.png]


The Pythagorean theorem is about right triangles, that is, triangles, one of whose angles is a 90° angle. A right triangle is displayed in the diagram to the right. The right angle be labeled C and the hypotenuse c, while A and B denote the other two angles, and a and b the sides opposite them, respectively, often called the legs of a right triangle. 

The Pythagorean theorem states that the square of the hypotenuse is the sum of the squares of the other two sides, that is, 

c2 = a2 + b2 
This theorem is useful to determine one of the three sides of a right triangle if you know the other two. For instance, if two legs are a = 5, and b = 12, then you can determine the hypotenuse c by squaring the lengths of the two legs (25 and 144), adding the two squares together (169), then taking the square root to get the value of c, namely, 13. 

Likewise, if you know the hypotenuse and one leg, then you can determine the other. For instance, if the hypotenuse is c = 41, and one leg is a = 9, then you can determine the other leg b as follows. Square the hypotenuse and the first leg (1681 and 81), subtract the square of the first leg from the square of the hypotenuse (1600), then take the square root to get the value of the other leg b, namely 40. 

An explanation of the Pythagorean theorem

Although it isn't necessary to know why the Pythagorean theorem is true, everyone has some curiosity about it. You can find a very formal proof of it by Euclid, which appears in his Elements, Proposition I.47, and the converse of it in Proposition I.48. The converse says that the only triangles for which c2 = a2 + b2 are right triangles in which c is the hypotenuse. Euclid's proof is not the easiest to follow, and hundreds of others have been given. Here's a nice one given by Thabit ibn-Qurra (826-901). 
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Proof: Start with the right triangle ABC with right angle at C. Draw a square on the hypotenuse AB, and translate the original triangle ABC along this square to get a congruent triangle A'B'C' so that its hypotenuse A'B' is the other side of the square (but the triangle A'B'C' lies inside the square). Draw perpendiculars A'E and B'F from the points A' and B' down to the line BC. Draw a line AG to complete the square ACEG. 

Note that ACEG is a square on the leg AC of the original triangle. Also, the square EFB'C' has side B'C' which is equal to BC, so it equals a square on the leg BC. Thus, what we need to show is that the square ABB'A' is equal to the sum of the squares ACEG and EFB'C'. 

But that's pretty easy by cutting and pasting. Start with the big square ABB'A'. Translate the triangle A'B'C' back across the square to triangle ABC, and translate the triangle AA'G across the square to the congruent triangle BB'F. Paste the pieces back together, and you see you've filled up the squares ACEG and EFB'C'. Therefore, ABB'A' = ACEG + EFB'C', as required. 

Q.E.D.

Similar triangles

[image: image3.png]a





Two triangles ABC and DEF are similar if (1) their corresponding angles are equal, that is, angle A equals angle D, angle B equals angle E, and angle C equals angle F, and (2) their sides are proportional, that is, the ratios of the three corresponding sides are equal: 

	AB 



DE 
	 = 
	BC 



EF 
	 = 
	CA 



FD 


In fact, as Euclid showed, each of these two conditions implies the others. That is to say, if corresponding angles are equal, then the three ratios are equal (Prop. VI.4), but if the three ratios are equal, then corresponding angles are equal (Prop. VI.5). Thus, it is enough to know either that their corresponding angles are equal or that their sides are proportional in order to conclude that they are similar triangles. 
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Typically, the smaller of the two similar triangles is part of the larger. For example, in the diagram to the left, triangle AEF is part of the triangle ABC, and they share the angle A. When this happens, the opposite sides, namely BC and EF, are parallel lines. 
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This situation frequently occurs in trigonometry applications, and for many of those, one of the three angles A, B, or C is a right angle. 

The relation between sines and chords

In this section we'll only consider sines of angles between 0° and 90°. In the section on trigonometric functions, we'll define sines for arbitrary angles. 

A sine is half of a chord. More accurately, the sine of an angle is half the chord of twice the angle. 

The bow and arrow diagram
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Consider the angle BAD in this figure, and assume that AB is of unit length. Let the point C be the foot of the perpendicular dropped from B to the line AD. Then the sine of angle BAD is defined to be the length of the line BC, and it is written sin BAD. You can double the angle BAD to get the angle BAE, and the chord of angle BAE is BE. Thus, the sine BC of angle BAD is half the chord BE of angle BAE, while the angle BAE is twice the angle BAD. Therefore, as stated before, the sine of an angle is half the chord of twice the angle. 

Right Triangles
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Let's agree again to the standard convention for labelling the parts of a right triangle. Let the right angle be labelled C and the hypotenuse c. Let A and B denote the other two angles, and a and b the sides opposite them, respectively. 

Solving right triangles

We can use the Pythagorean theorem and properties of sines, cosines, and tangents to solve the triangle, that is, to find unknown parts in terms of known parts. 

· Pythagorean theorem: a2 + b2 = c2. 

· Sines: sin A = a/c, sin B = b/c. 

· Cosines: cos A = b/c, cos B = a/c. 

· Tangents: tan A = a/b, tan B = b/a. 

Let's first look at some cases where we don't know all the sides. Suppose we don't know the hypotenuse but we do know the other two sides. The Pythagorean theorem will give us the hypotenuse. For instance, if a = 10 and b = 24, then c2 = a2 + b2 = 102 + 242 = 100 + 576 = 676. The square root of 676 is 26, so c = 26. (It's nice to give examples where the square roots come out whole numbers; in life they usually don't.) 

Now suppose we know the hypotenuse and one side, but have to find the other. For example, if b = 119 and c = 169, then a2 = c2 – b2 = 1692 – 1192 = 28561 – 14161 = 14400, and the square root of 14400 is 120, so a = 120. 

We might only know one side but we also know an angle. For example, if the side a = 15 and the angle A = 41°, we can use a sine and a tangent to find the hypotenuse and the other side. Since sin A = a/c, we know c = a/sin A = 15/sin 41. Using a calculator, this is 15/0.6561 = 22.864. Also, tan A = a/b, so b = a/tan A = 15/tan 41 = 15/0.8693 = 17.256. Whether you use a sine, cosine, or tangent depends on which side and angle you know. 

Inverse trig functions: arcsine, arccosine, and arctangent

Now let's look at the problem of finding angles if you know the sides. Again, you use the trig functions, but in reverse. Here's an example. Suppose a = 12.3 and b = 50.1. Then tan A = a/b = 12.3/50.1 = 0.2455. Back when people used tables of trig functions, they would just look up in the tangent table to see what angle had a tangent of 0.2455. On a calculator, we use the inverse trig functions named arctangent, arcsine, and arccosine. Usually there's a button on the calculator labelled "inv" or "arc" that you press before pressing the appropriate trig button. The arctangent of 0.2455 is 13.79, so the angle A is 13.79°. (If you like, you can convert the 0.79 degrees to minutes and seconds.) 

That's all there is to it. 

The other three trigonometric functions: cotangent, secant, and cosecant

For most purposes the three trig functions sine, cosine, and tangent are enough. There are, however, cases when some others are needed. In calculus, secant is frequently used. You might ask, "why six trig functions?" It's a kind of symmetry. There are six ways of making ratios of two sides of a right triangle, and that gives the six functions: 

1. sin A = a/c (opp/hyp) 

2. cos A = b/c (adj/hyp) 

3. tan A = a/b (opp/adj) 

4. cot A = b/a (adj/opp) 

5. sec A = c/b (hyp/adj) 

6. csc A = c/a (hyp/opp) 

You can see by the listing that cotangent (abbreviated cot, or sometimes ctn) is the reciprocal of tangent, secant (abbreviated sec) is the reciprocal of cosine, and cosecant (abbreviated csc, or sometimes cosec) is the reciprocal of sine. They're pretty much redundant, but it's worthwhile to know what they are in case you come across them. Note that cotangents are tangents of complementary angles, which means that cot A = tan B, and cosecants are secants of complementary angles, and that means that csc A = sec B. 

These other three functions can also be interpreted with the unit circle diagram. 
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We're considering the angle AOB. Recall that its tangent is the line AC. By symmetry the tangent of the angle FOB is the line FG, but FOB is the complementary angle of AOB, hence, the cotangent of AOB is FG. 

Next, to interpret secants geometrically. The angle AOB appears in the triangle COA as angle AOC, so sec AOB = sec AOC = hyp/adj = OC/OA  ;= OC. There you have it–the secant is the line from the center of the circle to the tangent line AC. The reason it is called the secant is because it cuts the circle, and the word "secant" comes from the Latin word meaning "cutting." 

Similarly, the cosecant of the angle AOB is the line OG from the center of the circle to the cotangent line FG. 
Sines and cosines of arbitrary angles

Now that we have specified arbitrary angles, we can define their sines and cosines. Let the angle be placed so that its vertex is at the center of the unit circle O = (0,0), and let the first side of the angle be placed along the x-axis. Let the second side of the angle intersect the unit circle at B. Then the angle equals the angle AOB where A is (1,0). We use the coordinates of B to define the cosine of the angle and the sine of the angle. Specifically, the x-coordinate of B is the cosine of the angle, and the y-coordinate of B is the sine of the angle. 
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This definition extends the definitions of sine and cosine given before for acute angles. 

Properties of sines and cosines that follow from this definition

There are several properties that we can easily derive from this definition. Some of them generalize identities that we have seen already for acute angles. 

1. Sine and cosine are periodic functions of period 360°, that is, of period 2[image: image9.png]


. That's because sines and cosines are defined in terms of angles, and you can add multiples of 360°, or 2[image: image10.png]


, and it doesn't change the angle. Thus, 

sin (t + 360°) = sin t, and 

cos (t + 360°) = cos t.
Many of the modern applications of trigonometry follow from the uses of trig to calculus, especially those applications which deal directly with trigonometric functions. So, we should use radian measure when thinking of trig in terms of trig functions. In radian measure that last pair of equations read as 

sin (t + 2[image: image11.png]


) = sin t, and 

cos (t + 2[image: image12.png]


) = cos t.
2. Sine and cosine are complementary: 

cos t = sin ([image: image13.png]


/2 – t) 

sin t = cos ([image: image14.png]


/2 – t)
We've seen this before, but now we have it for any angle t. It's true because when you reflect the plane across the diagonal line y = x, an angle is exchanged for its complement. 

3. The Pythagorean identity for sines and cosines follows directly from the definition. Since the point B lies on the unit circle, its coordinates x and y satisfy the equation x2 + y2 =1. But the coordinates are the cosine and sine, so we conclude 

sin2 t +  cos2 t = 1.
We're now ready to look at sine and cosine as functions. 

4. Sine is an odd function, and cosine is an even function. You may not have come across these adjectives "odd" and "even" when applied to functions, but it's important to know them. A function f is said to be an odd function if for any number x, f(–x) = –f(x). A function f is said to be an even function if for any number x, f(–x) = f(x). Most functions are neither odd nor even functions, but it's important to notice when a function is odd or even. Any polynomial with only odd degree terms is an odd function, for example, f(x) = x5 + 8x3 – 2x. (Note that all the powers of x are odd numbers.) Similarly, any polynomial with only even degree terms is an even function. For example, f(x) = x4 – 3x2 – 5. (The constant 5 is 5x0, and 0 is an even number.) 

Sine is an odd function, and cosine is even 

sin –t = –sin t, and 

cos –t = cos t.
These facts follow from the symmetry of the unit circle across the x-axis. The angle –t is the same angle as t except it's on the other side of the x-axis. Flipping a point (x,y) to the other side of the x-axis makes it into (x,–y), so the y-coordinate is negated, that is, the sine is negated, but the x-coordinate remains the same, that is, the cosine is unchanged. 

5. An obvious property of sines and cosines is that their values lie between –1 and 1. Every point on the unit circle is 1 unit from the origin, so the coordinates of any point are within 1 of 0 as well. 

Computing Trigonometric Functions


This is a completely optional page. It is not necessary to know how to compute the trig functions and their inverses in order to use them. Nonetheless, many people are interested in how values of these functions were computed before and after the invention of calculators and computers. If you're interested, then read on. Otherwise, go on to the next section. on oblique triangles. 

Before computers: tables

Ptolemy (100-178) produced one of the earliest tables for trigonometry in his work, the Almagest, and he included the mathematics needed to develop that table. It was a table of chords (discussed earlier) for every arc from 1/2° through 180° in intervals of 1/2°. Also he explained how to interpolate between the given angles. 

Rather than repeating what he did for chords, let's look at how to create tables for sines and cosines using his methods. First, based on the Pythagorean theorem and similar triangles, the sines and cosines of certain angles can be computed directly. In particular, you can directly find the sines and cosines for the angles 30°, 45°, and 60° as described in the section on cosines. Ptolemy knew two other angles that could be constructed, namely 36° and 72°. These angles were constructed by Euclid in Proposition IV.10 of his Elements. Like Ptolemy, we can use that construction to compute the trig functions for those angles. At this point we could compute the trig functions for the angles 30, 36, 45, 60, and 72 degrees, and, of course we know the values for 0 and 90 degrees, too. 

Keep in mind that if you know the sine of an angle, then you know the cosine of the complementary angle; likewise, if you know then cosine of an angle then you know the sine of the complementary angle: 

cos t = sin (90° – t)       sin t = cos (90° – t) 

So you have the trig functions for 18 and 54 degrees, too. 

Next, you can use the half-angle formulas for sines and cosines to compute the values for half of an angle if you know the values for the angle. If t is an angle between 0° and 90°, then 

sin t/2 = [image: image15.png]


((1 – cos t) / 2)       cos t/2 = [image: image16.png]


((1 + cos t) / 2) 

Using these, from the values for 18, 30, and 54 degrees, you can find the values for 27, 15, and 9 degrees, and, therefore, their complements 63, 75, and 81 degrees. 

With the help of the sum and difference formulas, 

sin (s + t) = sin s cos t + cos s sin t 

sin (s – t) = sin s cos t – cos s sin t 

cos (s – t) = cos s cos t + sin s sin t 

cos (s + t) = cos s cos t – sin s sin t 

you can find the sine and cosine for 3° (from 30° and 27°) and then fill in the tables for sine and cosine for angles from 0° though 90° in increments of 3°. 

Again, using half-angle formulas, you could produce a table with increments of 1.5° (that is, 1° 30'), then 0.75° (which is 45'), or even of 0.375° (which is 22' 30"). But how do you get a table with 1° increments? Ptolemy recognized that there was no Euclidean construction to trisect an angle of 3° to get an angle of 1°, but since the sine function is almost linear for small angles, you could approximate sin 1° just by taking 1/3 of sin 3°. With that step, we can construct trig tables for trig functions with increments of 1°. 

Better trig tables have been created throughout the centuries. For instance, Ulugh Beg (15th century) constructed sine and tangent tables for every minute of arc to about nine digits of accuracy! 

Incidentally, if you have a table of sines, you can read it in reverse to compute arcsine, so only one table is needed for both. 

After computers: power series

Although computers and calculators could just store trig tables in their memories, they can also compute trig functions directly, which is what they usually do. 

In the late 17th century, Newton and other mathematicians developed power series. A power series is like a polynomial of unbounded degree. For the various trig functions, these mathematicians found power series. Here are the power series for sine and cosine (where x is an angle measured in radians): 

sin x =  x — x3/3! + x5/5! —  x7/7! +... 

cos x =  1 — x2/2! + x4/4! —  x6/6! +... 

The three dots ... mean that the expression is to go on forever, adding another term, then subtracting a term, etc. The exclamation point ! is to be read "factorial", and it means you multiply together the whole numbers from 1 up through the given number. For example, 5!, "five factorial", equals 1 times 2 times 3 times 4 times 5, which is 120, and so, 6! = 720. 

These power series have infinitely many terms, but they get small so very fast that only the first few terms contribute much. 

Suppose you want to compute the sine of 45°, correct to some number of places, using this power series. First convert 45° to radians to get [image: image17.png]


/4, which is 0.78539816 to eight places. Then compute the value of 

0.78539816 — 0.785398163/3! + 0.785398165 —  0.785398167/7! +... 

You'll find the following partial computations 

0.78539816 = 0.78539816 
0.70465265 = 0.78539816 — 0.785398163/3! 
0.70714304 = 0.78539816 — 0.785398163/3! + 0.785398165/5! 
0.70710647 = 0.78539816 — 0.785398163/3! + 0.785398165/5! —   0.785398167/7! 
0.70710678 = 0.78539816 — 0.785398163/3! + 0.785398165/5! —   0.785398167/7! + 0.785398169/9! 

The correct answer is the square root of 1/2, which is 0.70710678. Only four terms of the power series were needed to get the first five places, and the next term gave the next two places. 

A little bit of analysis is needed to determine how many terms of the power series are needed to achieve the desired accuracy. Also, certain other tricks can be used to speed up the computations. In any case, the essential idea is to use the first few terms of a power series to compute trig functions. 

The power series for the rest of the trig functions and the power series for the inverse trig functions can be found in most books on calculus that discuss power series. 

Oblique Triangles


An oblique triangle is any triangle that is not a right triangle. It could be an acute triangle (all threee angles of the triangle are less than right angles) or it could be an obtuse triangle (one of the three angles is greater than a right angle). Actually, for the purposes of trigonometry, the class of "oblique triangles" might just as well include right triangles, too. Then the study of oblique triangles is really the study of all triangles. 
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Let's agree to a convention for labelling the parts of oblique triangles generalizing the convention for right triangles. Let the angles be labelled A, B, and C, and let the sides opposite them be labelled a, b, and c, respectively. 

Solving oblique triangles

The trigonometry of oblique triangles is not as simple of that of right triangles, but there are two theorems of geometry that give useful laws of trigonometry. These are called the "law of cosines" and the "law of sines." There are other "laws" that used to be used, but since the common use of calculators, these two laws are enough. 

The law of cosines

This is a simply stated equation: 

c2 = a2 + b2 – 2ab cos C. 
It looks like the Pythagorean theorem except for the last term, and if C happens to be a right angle, that last term disappears (since the cosine of 90° is 0), so the law of cosines is actually a generalization of the Pythagorean theorem. 

Note that each triangle gives three equations for the law of cosines since you can permute the letters as you like. The other two versions are then a2 = b2 + c2 – 2bc cos A, and b2 = c2 + a2 – 2ca cos B. 

The law of cosines relates the three sides of the triangle to one of the angles. You can use it in a couple of ways. 

First, if you know one angle and the two adjacent sides, then you can determine the opposite side. For instance, if angle C = 60°, side a = 5, and side b = 8, then the law of cosines says c2 = 25 + 64 – 80 cos 60°. Since the cosine of 60° is 1/2, that equation simplifies to c2 = 49, so c = 7. 

Second, if you know all three sides of a triangle, then you can use it to find any angle. For instance, if the three sides are a = 5, b = 6, and c = 7, then the law of cosines says 49 = 25 + 36 – 60 cos C, so cos C = 12/60 = 0.2, and, with the use of a calculator, C = 1.3734 radians = 78.69°. 

Note: When triangle is obtuse, the cos C is negative. Suppose the three sides are a = 5, b = 6, and c = 10. Then the law of cosines says 100 = 25 + 36 – 60 cos C, so cos C = - 49/60 = - 0.81667. As you can see in the graphs on the previous page, the cosine of an obtuse angle is negative. This is fine, and your calculator will compute the arccosine properly. You'll get C = 2.2556 radians = 129.237°. 

The law of sines

The law of sines is also a simply stated equation 

	sin A 



a
	=
	sin B 



b
	=
	sin C 



c


Note that the law of sines says that three ratios are equal. Like the law of cosines, you can use the law of sines in two ways. 

First, if you know two angles and the side opposite one of them, then you can determine the side opposite the other one of them. For instance, if angle A = 30°, angle B = 45°, and side a = 16, then the law of sines says (sin 30°)/16 = (sin 45°)/b. Solving for b gives b = 16(sin 45°)/(sin 30°) = 22.6274. 

Second, if you know two sides and the angle opposite one of them, then you can almost determine the angle opposite the other one of them. For instance, if side a = 25, side b = 15, and angle A = 40°, then the law of sines says (sin 40°)/25 = (sin B)/15. Solving for sin B gives sin B = 15 (sin 40°)/25 = 0.38567. Now, the arcsin of 0.38567 = 22.686°. Warning: you may not have the correct answer. There are two angles between 0 and 180° with a given sine; the second one is the supplement of the first. So in this case, the second one is the obtuse angle 180 – 22.686 = 157.314°. This situation is indeterminant. Knowing two sides and the angle opposite one of them is not always enough to determine the triangle. There is no deterministic "side-side-angle" congruence theorem in geometry. 

The Laws of Cosines and Sines


We saw in the section on oblique triangles that the law of cosines and the law of sines were useful in solving for parts of a triangle if certain other parts are known. The question here is "why are those laws valid?" 

	This is an optional section. When learning how to use trigonometry to solve oblique triangles, it is most important to know when and how to use these two laws. If that's enough for you, then just skip on to the next section on area of a triangle. But if you're interested in why they're true, then continue on. 

As usual, we'll use a standard notation for the angles and sides of a triangle. That means the side a is opposite the angle A, the side b is opposite the angle B, and the side c is opposite the angle C. 
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The law of sines

	sin A 



a
	 = 
	sin B 



b
	 = 
	sin C 



c


This can also be interpreted as three equations: 

	sin B 



b
	 = 
	sin C 



c
	,  
	sin A 



a
	 = 
	sin C 



c
	,   and  
	sin A 



a
	 = 
	sin B 



b


Since the three versions differ only in the labelling of the triangle, it is enough to verify one just one of them, so we'll just consider the version stated first. 

An explanation of the law of sines is fairly easy to follow, but in some cases we'll have to consider sines of obtuse angles. 
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First, drop a perpendicular line AD from A down to the base BC of the triangle. The foot D of this perpendicular will lie on the edge BC of the triangle when both angles B and C are acute. But if angle B is obtuse, then the foot D will lie on BC extended in the direction of B. Yet if angle C is obtuse, then D will line on BC extended in the direction of C. Fortunately, the argument is the same in all three cases. 

Let h denote the length of this line AD, that is, the height (or altitude) of the triangle. 

When angle B is acute, then sin B = h/c. But this is true even when B is an obtuse angle as in the third diagram. There, angle ABC is obtuse. But the sine of an obtuse angle is the same as the sine of its supplement. That means sin ABC is the same as sin ABD, that is, they both equal h/c. 

Likewise, it doesn't matter whether angle C is acute or obtuse, sin C = h/b in any case. 

These two equations tell us that h equals both c sin B and b sin C. But from the equation c sin B = b sin C, we can easily get the law of sines: 

	sin B 



b
	 = 
	sin C 



c
	.


The law of cosines

c2 = a2 + b2 – 2ab cos C 
There are two other versions of the law of cosines, 

a2 = b2 + c2 – 2bc cos A 

and 

b2 = a2 + c2 – 2ac cos B. 
Since the three verions differ only in the labelling of the triangle, it is enough to verify one just one of them. We'll consider the version stated first. 

In order to see why these laws are valid, we'll have to look at three cases. For case 1, we'll take the angle C to be obtuse. In case 2, angle C will be a right angle. In case 3, angle C will be acute. 



	Case 1. For this case, we take angle C to be obtuse. This case has a wrinkle in it since the cosine of an obtuse angle is negative. Let's see how that goes. 

	First, drop a perpendicular line AD from A down to the base BC of the triangle. In this case, the foot D of this perpendicular will lie outside the triangle. Let h denote the height of the triangle, let d denote BD, and let e denote CD. 

We can derive the following equations from the figure: 

c2
 = 

d2 + h2
b2
 = 

e2 + h2
d
 = 

a + e
cos C
 = 

– e/b 

In general, the cosine of an obtuse angle is the negation of the cosine of its supplement. In this case that means the cosine of angle C, that is to say angle ACB, is the negation of the cosine of angle ACD. That's why the minus sign appears in the last equation. 
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These equations and plain algebra finish the argument as follows: 

	c2
	 = 
	d2 + h2

	
	 = 
	(a + e)2 + h2

	
	 = 
	a2 + 2ae + e2 + h2 

	
	 = 
	a2 + b2 + 2ae 

	
	 = 
	a2 + b2 – 2ab cos C 


Thus, the law of cosines is valid when C is an obtuse angle. 



Case 2. Now consider the case when the angle at C is right. The cosine of a right angle is 0, so the law of cosines, c2 = a2 + b2 – 2ab cos C, simplifies to becomes the Pythagorean identity, c2 = a2 + b2, for right triangles which we know is valid. 



Case 3. In this case we assume that the angle C is an acute triangle. Drop a perpendicular line AD from A down to the base BC of the triangle. The foot D of the perpendicular will (1) lie on the edge BC if angle B is acute, (2) coincide with the point B if the angle B is right, or (3) lie on the side BC extended if the angle B is obtuse. 
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Let h denote the height of the triangle, let d denote BD, and e denote CD. 

Then we can read the following relationships from the diagram: 

	c2
	 = 
	d2 + h2

	b2
	 = 
	e2 + h2

	
	
	

	cos C
	 = 
	e/b 

	d2
	 = 
	(e — a)2


That last equation requires explanation. If the point D lies on the side BC, then d = a – e, but if D lies on BC extended, then d = e – a. In either case, d2 = (e – a)2. 

These equations and a little algebra finish the proof as follows: 

	c2
	 = 
	d2 + h2

	
	 = 
	d2 – e2 + b2

	
	 = 
	(d – e) (d + e) + b2

	
	 = 
	(a – 2e) a + b2

	
	 = 
	a2 + b2 – 2ae

	
	 = 
	a2 + b2 – 2ab cos C


Thus, we now know that the law of cosines is valid when both angle C is acute, and we've finished all three cases. 

Incidentally, Euclid included in his Elements a couple of propositions, II.12 and II.13, that look very much like the law of cosines, but they are not actually the law of cosines, of course, since trigonometry had not been developed in Euclid's time. 

Summary of trigonometric identities


You have seen quite a few trigonometric identities in the past few pages. It is convenient to have a summary of them for reference. These identities mostly refer to one angle denoted t, but there are a few of them involving two angles, and for those, the other angle is denoted s.. 

More important identities

You don't have to know all the identities off the top of your head. But these you should. 

Defining relations for tangent, cotangent, secant, and cosecant in terms of sine and cosine. 

	tan t = 
	sin t 



cos t
	     
	cot t = 
	1 



tan t
	 = 
	cos t 



sin t

	sec t = 
	1 



cos t
	     
	csc t = 
	1 



sin t
	
	


The Pythagorean formula for sines and cosines. 

sin2 t + cos2 t = 1 

Identities expressing trig functions in terms of their complements 

cos t = sin([image: image23.png]


/2 – t)       sin t = cos([image: image24.png]


/2 – t) 

cot t = tan([image: image25.png]


/2 – t)       tan t = cot([image: image26.png]


/2 – t) 

csc t = sec([image: image27.png]


/2 – t)       sec t = csc([image: image28.png]


/2 – t) 

Periodicity of trig functions. Sine, cosine, secant, and cosecant have period 2[image: image29.png]


 while tangent and cotangent have period[image: image30.png]


. 

sin (t + 2[image: image31.png]


) = sin t 

cos (t + 2[image: image32.png]


) = cos t 

tan (t + [image: image33.png]


) = tan t 

Identities for negative angles. Sine, tangent, cotangent, and cosecant are odd functions while cosine and secant are even functions. 

sin  –t = –sin t 

cos –t = cos t 

tan –t  = –tan t 

Sum formulas for sine and cosine 

sin (s + t) = sin s cos t + cos s sin t 

cos (s + t) = cos s cos t – sin s sin t 

Double angle formulas for sine and cosine 

sin 2t = 2 sin t cos t 

cos 2t = cos2 t – sin2 t = 2 cos2 t – 1 =  1 – 2 sin2 t 

Less important identities

You should know that there are these identities, but they are not as important as those mentioned above. They can all be derived from those above, but sometimes it takes a bit of work to do so. 

The Pythagorean formula for tangents and secants. 

sec2 t = 1 + tan2 t 

Identities expressing trig functions in terms of their supplements 

sin([image: image34.png]


 – t) = sin t 

cos([image: image35.png]


 – t) = –cos t 

tan([image: image36.png]


 – t) = –tan t 

Difference formulas for sine and cosine 

sin (s – t) = sin s cos t – cos s sin t 

cos (s – t) = cos s cos t + sin s sin t 

Sum, difference, and double angle formulas for tangent 

	tan (s + t) = 
	tan s + tan t 



1 – tan s tan t

	tan (s – t) = 
	tan s – tan t 



1 + tan s tan t

	tan 2t = 
	2 tan t 



1 – tan2 t


Half-angle formulas 

sin t/2 = ±[image: image37.png]


((1 – cos t) / 2) 

cos t/2 = ±[image: image38.png]


((1 + cos t) / 2) 

	tan t/2 = 
	sin t 



1 + cos t
	 = 
	1 – cos t 



sin t


Truly obscure identities

These are just here for perversity. Yes, of course, they have some applications, but they're usually narrow applications, and they could just as well be forgotten until, if ever, needed. 

Product-sum identities 

	sin s + sin t = 
	2 sin 
	s + t 



2
	 cos 
	s – t 



2
	

	sin s – sin t = 
	2 cos 
	s + t 



2
	 sin 
	s – t 



2
	

	cos s + cos t = 
	2 cos 
	s + t 



2
	 cos 
	s – t 



2
	

	cos s – cos t = 
	–2 sin 
	s + t 



2
	 sin 
	s – t 



2
	


Product identities 

	sin s cos t = 

	sin (s + t) + sin (s – t) 



2


	cos s cos t = 

	cos (s + t) + cos (s – t) 



2


	sin s sin t = 

	cos (s – t) – cos (s + t) 



2



	
	  
	Aside: weirdly enough, these product identities were used before logarithms to perform multiplication. Here's how you could use the second one. If you want to multiply x times y, use a table to look up the angle s whose cosine is x and the angle t whose cosine is y. Look up the cosines of the sum s + t, and the difference s – t. Average those two cosines. You get the product xy! Three table look-ups, and computing a sum, a difference, and an average rather than one multiplication. Tycho Brahe (1546-1601), among others, used this algorithm known as prosthaphaeresis.


Triple angle formulas. You can easily reconstruct these from the addition and double angle formulas. 

sin 3t = 3 sin t – 4 sin3 t 

cos 3t = 4 cos3 t –3 cos t 
	tan 3t = 
	3 tan t – tan3t 



1 – 3 tan2t


More half-angle formulas. (These are used in calculus for a particular kind of substitution in integrals sometimes called the Weierstrass t-substitution.) 

	sin t = 
	2 tan t/2 



1 + tan2 t/2
	
      
	cos t = 
	1 – tan2 t/2 



1 + tan2 t/2
	
      
	tan t = 
	2 tan t/2 



1 – tan2 t/2


